School of Applied Sciences

Evaluation of a University Physics Studio Learning Environment: The Interrelationships of Students’ Perceptions, Epistemological Beliefs and Cognitive Outcomes.

Shelley R. Yeo

This thesis is presented as part of the requirements for the award of the Degree of Doctor of Philosophy of the Curtin University of Technology

May 2002
Abstract

Physics learning has been the focus of much research over the last few decades. One line of such research has had knowledge about physics conceptual understanding as its object. Conceptual physics learning is found to be enhanced by the use of a variety of interactive engagement teaching and learning strategies. Another line of research in physics education has been through the development of computer-based learning environments as alternatives to traditional lecturing approaches. One such development has been that of a ‘physics Studio’ in which computer software delivers content and facilitates activities and communication, and instructors adopt a tutoring or learning facilitator role rather than lecturing role.

Curtin University of Technology has drawn on both lines of research, resulting in the creation of a Physics Studio. In addition, a constructivist philosophy has provided guiding principles underpinning the conduct of first year physics classes. The aim of this study has been to evaluate students’ physics learning in first year Studio classes. In particular, the aim has been to examine the role of students’ epistemological beliefs (beliefs about knowledge and knowing) and their perceptions of the learning environment, in that learning.

The study is situated across the fields of psychology and physics education research. It uses an ex-post facto comparative research design together with a qualitative methodology to compare students in Studio classes with those in physics classes in a traditional lecture stream. The use of multidimensional scaling as a technique for reducing complex data to a visual form for the purpose of describing and investigating the Studio learning environment is also explored.

Findings from this study suggest that a Studio approach that incorporates student-centred, social constructivist teaching and learning behaviours can result in improved learning for students in a discipline such as physics, which is normally associated with authoritative and didactic teaching.

The results indicate that most students responded positively to the characteristics of the Studio approach. Their learning outcomes and improvement in conceptual understanding exceeded those of students in the traditional lecture classes. Students’ beliefs about the structure of knowledge affected their cognitive
outcomes through their preference for particular learning strategies. Students with ‘naïve’, positivist epistemological beliefs were more likely to choose a narrow range of learning strategies and to have poorer cognitive outcomes. Students with more ‘sophisticated’, constructivist epistemological beliefs were more likely to choose a wider range of learning strategies and to have better cognitive outcomes.

There is evidence from this work that the constructivist learning environment influences students’ epistemological beliefs, and that their beliefs influence the way they respond to the learning environment. Using multidimensional scaling, spatial configurations of learning environment parameters for Studio and traditional groups, although structurally similar, were visibly different. In particular, the preferred learning environment of Studio students formed a complex web of interrelationships, whereas the preferred learning environment of students in the traditional course formed a simpler pattern with minimal interrelationships among parameters.

Other factors affecting the responses of students to the constructivist learning environment were their perceptions of the nature of the subject matter as represented by assessment tasks, and their expectations about the role of instructors. Some students were unable to change their epistemological beliefs and learning patterns to fit teachers’ expectations.

These findings have implications for teachers of physics who adopt or wish to adopt constructivist rather than didactic teaching methods, and for those implementing Studio approaches. An instructor’s best efforts to implement alternative teaching approaches and methods can be circumvented by the beliefs and attitudes of students if they are inconsistent with the epistemology implicit in the teaching methods. For example, students with naïve beliefs in the structure and certainty of knowledge need guidance and experiences that provide validity for different ways of learning physics. Students also need help to understand the concept of, and to value, self-reflective learning practices. Finally, learning in a Studio class is enhanced for students whose beliefs are consistent with, or change to suit, the philosophy underpinning instruction.
Acknowledgements

This study has taken more than three years to complete. During this time, I have been fortunate to have had the support, encouragement, assistance and advice of many people.

First and foremost, I thank my principal supervisor and mentor, Associate Professor Marjan Zadnik. Throughout, he has expressed confidence in my ability and constructive criticism when needed. He has also been a friend.

I also thank most sincerely, my two associate supervisors, Professor David Treagust and Dr Bob Loss, both of whom have always found time in their very busy schedules to help or offer advice.

There are many others who have provided timely assistance, support or simply shown an interest in my work. I therefore acknowledge and thank the following:

Professor Brian O'Connor, Head of the School of Applied Science;
Dr Brendan McGann, post-graduate studies advisor, Department of Applied Physics;
Professor Alex Radloff;
Dr Beverley Webster;
Dr Peter Taylor;
Associate Professor Daryl Fisher;
Colleagues and friends in the Department of Applied Physics and the Science and Mathematics Education Centre.

I would also like to thank:
The students in the two courses, Studio and Traditional, who patiently and willingly completed surveys, questionnaires or interviews during the year;
Physics Department tutors who kindly allowed me time with their students and occasionally administered a survey for me;
My colleagues who taught the Studio course and the Lecture course, for their forbearance and support over a year of data collection: Dr Ian Bailey; Dr Craig Buckley; Dr Yarra Korczynskyj, Dr Brendan McGann, Dr Salim Siddiqui, and Associate Professor Marjan Zadnik.

Finally, to my husband and our family, thank you for your encouragement and support.

During the period of the study, I have been fortunate to have been supported financially though an Australian Post-graduate Award with Stipend.
Table of Contents

Abstract ... ii
Acknowledgements .. iv
Table of Contents ... v
List of Tables ... x
List of Figures .. xiv
Abbreviations .. xvii
Advice for readers ... xviii

CHAPTER 1: OVERVIEW OF THE STUDY 1
1.1 Introduction ... 1
1.2 Physics instruction at Curtin University of Technology 2
1.3 Overarching questions .. 4
1.4 Specific research questions .. 5
1.5 Multidimensional scaling .. 6
1.6 Constructivism in education .. 7
1.7 Epistemological beliefs ... 7
1.8 Research on student learning in higher education 8
1.9 Development of the Studio model of instruction 10
1.9.1 Studio as a metaphor ... 11
1.9.2 Rensselaer Polytechnic Institute Studio evaluation 12
1.9.3 Other Studio physics courses .. 14
1.9.4 Curtin University Physics Studio .. 14
1.10 Evaluating innovative teaching initiatives .. 15
1.11 Curtin University Physics Studio .. 17
1.11.1 Physical layout of the Studio .. 17
1.11.2 Units and unit content .. 17
1.11.3 Studio students .. 18
1.12 Curtin University lecture-based physics course 18
1.13 Studio method under study ... 19
1.13.1 Details of the Studio physics course .. 22
1.13.2 The Studio in operation .. 26
1.14 Review of Chapter 1 .. 28
1.15 References for Chapter 1 .. 29

CHAPTER 2: REVIEW OF LITERATURE 32
2.1 Introduction .. 32
2.2 Cognition .. 32
2.2.1 Historical development of cognition theories 32
2.2.2 Constructivism .. 35
2.3 Learning physics .. 45
2.3.1 Physics knowledge ... 46
2.3.2 Nature and status of conceptions ... 47
2.3.3 Conceptual change .. 49
2.3.4 Metalearning and metacognition ... 52
2.3.5 Other factors influencing physics learning 53
2.3.6 Physics Education Research practices ... 56
2.3.7 Measurement of learning outcomes ... 60
2.4 Learning environment research .. 60
2.4.1 History of learning environment research62
2.4.2 Importance of classroom learning environment research63
2.4.3 Assessing learning environments ...63
2.4.4 Tertiary level learning environments65
2.4.5 An alternative approach to learning environment assessment68

2.5 Epistemological beliefs ...69
2.5.1 Introduction ..70
2.5.2 Historical research and theory development70
2.5.3 Defining the construct of epistemological beliefs72
2.5.4 Assessing epistemological beliefs ...75
2.5.5 Acquisition and change of epistemological beliefs76
2.5.6 Epistemological beliefs in society ...77
2.5.7 Epistemological belief change ...78
2.5.8 Domain dependence of epistemological beliefs78
2.5.9 Epistemological beliefs and the process of learning81
2.5.10 Epistemological beliefs and academic performance81
2.5.11 Students’ beliefs about learning physics83
2.5.12 Physics-related epistemological beliefs87
2.5.13 Schommer’s model of epistemological beliefs90
2.5.14 Choice of questionnaires ...96
2.5.15 Review of Section 2.5 ...98

2.6 Beliefs ..100
2.6.1 Nature of beliefs and attitudes ..100
2.6.2 Belief categories ...101
2.6.3 Belief versus knowledge ...104
2.6.4 Measuring or assessing beliefs and attitudes105
2.6.5 Belief change ..106
2.6.6 Links to epistemological belief research107
2.6.7 Review of Section 2.6 ..109

2.7 Review of Chapter 2 ...109

2.8 References for Chapter 2 ...109

CHAPTER 3: METHODOLOGY ..119
3.1 Introduction ...119
3.2 Research methodology ...119
3.2.1 The paradigm debate ...119
3.2.2 A pragmatic approach ..121
3.2.3 Some issues related to education research122
3.2.4 Methodological design of study ...124
3.2.5 Research overarching questions ..124
3.2.6 Specific research questions ..125
3.2.7 Research design ...127
3.2.8 Data sources and instruments ...128
3.2.9 Quality criteria - Validity ..138
3.2.10 Quality criteria - Reliability ...143
3.2.11 Fairness versus subjectivity or objectivity143

3.3 Multidimensional scaling ..144
3.3.1 Introduction ..144
3.3.2 MDS applications ...144
3.3.3 MDS terminology ...145
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.4</td>
<td>MDS solutions</td>
<td>147</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Reliability of MDS solutions</td>
<td>149</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Validity of MDS solutions</td>
<td>150</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Different MDS approaches</td>
<td>151</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Software</td>
<td>151</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Processing the data</td>
<td>151</td>
</tr>
<tr>
<td>3.4</td>
<td>Review of Chapter 3</td>
<td>152</td>
</tr>
<tr>
<td>3.5</td>
<td>References for Chapter 3</td>
<td>152</td>
</tr>
</tbody>
</table>

CHAPTER 4: COMPARATIVE STUDY OF STUDIO AND TRADITIONAL LEARNING ENVIRONMENTS 156

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>156</td>
</tr>
<tr>
<td>4.2</td>
<td>Learning outcomes</td>
<td>156</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Traditional physics knowledge</td>
<td>157</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Conceptual change assessment</td>
<td>159</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Information technology self-efficacy beliefs</td>
<td>160</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Student retention or withdrawal</td>
<td>163</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Conclusions related to learning outcomes</td>
<td>168</td>
</tr>
<tr>
<td>4.3</td>
<td>Perceptions of the learning environment</td>
<td>168</td>
</tr>
<tr>
<td>4.3.1</td>
<td>University Social Constructivist Learning Environment Survey data collection</td>
<td>169</td>
</tr>
<tr>
<td>4.3.2</td>
<td>USCLES data analysis</td>
<td>169</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Perceptions of learning environment and cognitive outcomes</td>
<td>176</td>
</tr>
<tr>
<td>4.3.4</td>
<td>SI students’ self-monitoring and reflection skills</td>
<td>178</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Conclusions related to learning environment perceptions</td>
<td>182</td>
</tr>
<tr>
<td>4.4</td>
<td>Epistemological beliefs</td>
<td>182</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Students’ initial epistemological beliefs</td>
<td>183</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Students’ final epistemological beliefs and belief change</td>
<td>185</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Learning activity preferences</td>
<td>186</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Relationship between epistemological beliefs and learning preferences</td>
<td>191</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Relationships between learning preferences and cognitive outcomes</td>
<td>195</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Relationship between epistemological beliefs and cognitive outcomes</td>
<td>195</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Relationship between epistemological beliefs and perceptions of the learning environment</td>
<td>199</td>
</tr>
<tr>
<td>4.5</td>
<td>Review of Schommer’s work</td>
<td>203</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Epistemological belief dimensions</td>
<td>203</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Epistemological belief continua</td>
<td>204</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Five unresolved issues</td>
<td>205</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Population</td>
<td>206</td>
</tr>
<tr>
<td>4.6</td>
<td>QEB data collection and analysis</td>
<td>207</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Administration of QEB</td>
<td>207</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Preliminary data analysis</td>
<td>207</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Congeneric modelling</td>
<td>209</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Discussion</td>
<td>213</td>
</tr>
<tr>
<td>4.7</td>
<td>Re-analysis of QEB data</td>
<td>215</td>
</tr>
</tbody>
</table>
4.7.1 Internal consistency of scales ...222
4.8 Discussion – Chapter 4 ...223
4.9 Review of Chapter 4...225
4.10 References for Chapter 4...225

CHAPTER 5: COMPARISON OF LEARNING ENVIRONMENTS -
CORRELATIONAL STUDY 228

5.1 Introduction ..228
5.1.1 Specific research questions...228
5.2 Data processing ...229
5.3 Description of maps ..232
5.3.1 Overview of Map Series I: Cognitive outcomes, epistemological
beliefs and IT self-efficacy beliefs (CO/EB/IT) maps232
5.3.2 Overview of Map Series II: cognitive outcomes, epistemological
beliefs, IT self-efficacy beliefs and learning environment
(CO/EB/LE) maps ..233
5.3.3 Epistemological beliefs in MDS maps235
5.4 Interpreting MDS maps ..236
5.4.1 Identifying regions..236
5.4.2 What MDS maps do not show..239
5.4.3 Dimensionality and size/shape of regions239
5.4.4 Comparison between maps...240
5.5 Educational interpretation of maps...242
5.6 Analysis of maps - Part I ..244
5.6.1 Map Series I – Cognitive outcomes, epistemological beliefs and
IT self-efficacy beliefs (CO/EB/IT) maps245
5.6.2 Summary of observations and conclusions from Maps 1-8262
5.7 Analysis of maps – Part II ..264
5.7.1 Map Series II - cognitive outcomes, epistemological beliefs, IT
self-efficacy beliefs and learning environment (CO/EB/LE) maps
264
5.7.2 Summary of observations and conclusions from Maps 9-12273
5.7.3 Summary of observations and conclusions from Maps 13-16 ...283
5.7.4 Learning preferences in MDS maps ...284
5.8 Discussion ...284
5.8.1 Overview of the MDS methodology - validity and reliability ...286
5.9 Review of Chapter 5..289
5.10 References for Chapter 5...290

CHAPTER 6: SUMMARY AND CONCLUSIONS 291
6.1 Overview of study...291
6.2 Summary of findings and recommendations for educational
practice ...293
6.2.1 What are the cognitive outcomes of students learning physics in
the Studio course?..293
6.2.2 How do these Studio students assess and respond to the social
constructivist nature of their learning environment?295
6.2.3 What is the nature of the interrelationships between students’ perceptions of the learning environment, epistemological beliefs and cognitive outcomes? ..296

6.2.4 How can these complex interrelationships be made explicit or understandable? ...300

6.3 Limitations of the study ...301

6.3.1 Methodological design ...301

6.3.2 Choice of assessment instruments ..303

6.3.3 Transferability of results ...304

6.3.4 Role of the researcher ...304

6.4 Future research ...305

6.5 References for Chapter 6 ...306

APPENDICES 308

A.1 Instruments ..308

A.1.1 Semester 1 examination ..309

A.1.2 Quantum Mechanics test ...317

A.1.3 Force and Motion Conceptual Evaluation319

A.1.4 Thermal Concept Evaluation ..324

A.1.5 Questionnaire on Epistemological Beliefs329

A.1.6 IT (self-efficacy beliefs) Survey ..335

A.1.7 University Social Constructivist learning Environment Survey (Combined actual and preferred format)336

A.1.8 Self-Monitoring and Evaluation form (SMARF)340

A.1.9 Study Preferences Survey ..342

A.1.10 Exit survey ..344

A.2 Data 346

A.2.1 Flow chart of data sources and use ..346

A.2.2 Syllabus Unit Outlines ...347

A.2.3 Correlation data ..357

A.3 Papers ..365

A.3.1 Thermal Concept Evaluation ..365

A.3.2 Learning preferences and epistemological beliefs374
List of Tables

Table 1.1. Average normalised pretest-posttest gains from Cooper’s 1995 RPI study, and Cummings et al’s 1999 study of physics learning at RPI...........14
Table 1.2. Physics content of the two first year physics units that are the subject of the study...17
Table 1.3 A comparison of traditional and Studio instructional methods.25
Table 2.1. A summary of various constructivist research paradigms with fitting ontologies, epistemologies and pedagogical practices, showing the continuum from Traditional empiricism (non-constructivist) through to Social constructionism. Modified from Ernest (1995).........................37
Table 2.1 continued..38
Table 2.2. Conceptions of teacher behaviours that reflect various epistemological positions. ...40
Table 2.3. Various interactive engagement physics teaching models. Developed from Redish (1996). ...58
Table 2.4. USCLES scales and sample items from actual and preferred forms – adapted from Table 1 (Taylor et al., 1996).67
Table 2.5. Perry’s (1970) stages of intellectual and ethical development and epistemological positions..72
Table 2.6. Physics professors’ and students’ contrasting views of physics knowledge. ..86
Table 2.7 Schommer’s hypothesised system of epistemological beliefs..........90
Table 2.8. Overall scheme of the epistemological questionnaire and sample items. ...91
Table 2.9. Schommer’s (1990) four orthogonal factors (≥0.3) – college level students..93
Table 2.10. Four orthogonal factors (≥0.3) from Schommer and Dunnell, (1997) – ‘gifted’ high school students. ..93
Table 2.11. Four orthogonal factors (≥0.3) from Schommer (1998) – adult population...93
Table 2.12. Comparison between Schommer’s Questionnaire on Epistemological Beliefs (QEB) and Maryland Physics Expectations survey (MPEX). 97
Table 2.13. Five types of belief (Rokeach, 1968).......................................103
Table 3.1. Criteria and composition of the comparative groups – SI (studio instruction) and TI (traditional instruction).129
Table 3.2. Data types and data sources for both groups...............................132
Table 4.1. Summary of results for SI and TI students for the various instruments listed above. ...158
Table 4.2. A comparison of the average normalised gains of Curtin physics classes and RPI classes using the FMCE.160
Table 4.3: Rotated component matrix for two factor solution for IT Questionnaire showing items loading >0.4. ..161
Table 4.4. SI and TI students’ scores on the IT Questionnaire - using the same students for pretest and posttest. ..162
Table 4.5. Categories of students based on the status of their enrolment during the year..163
Table 4.6. Descriptive data on SI and TI student enrolment and attendance status. ..164
Table 4.7. Comparison of P, F and W+DNC for TI and SI students using chi-square test on whole year data. ..165
Table 4.8. Reasons given by students on exit surveys for withdrawing from unit or course after it had started. Data does not include students who cancelled their enrolment prior to start of the unit. ..167
Table 4.9. Whole sample reliabilities and mean differences for actual and preferred forms (N=152). ...170
Table 4.10. SI and TI students’ responses to the USCLES Actual form – means, standard deviations and differences ...171
Table 4.11. SI and TI students’ responses to the USCLES Preferred form – means, standard deviations and differences173
Table 4.12. Differences between SI students’ responses to the Actual and Preferred USCLES forms – means and differences (N=37)174
Table 4.13. Differences between TI students’ responses to the Actual and Preferred USCLES forms – means and differences (N=60)174
Table 4.14. SI and TI students’ responses to the USCLES Actual form: Student Communication and Reflection, and Teacher Interpersonal Qualities – means, standard deviations and differences175
Table 4.15. SI and TI students’ responses to the USCLES Preferred form: Student Communication and Reflection, and Teacher Interpersonal Qualities – means, standard deviations and differences ..176
Table 4.16. Correlations between cognitive outcomes and perceptions of the Actual learning environment for SI (N = 37) and TI (N = 52) students. Correlations between –0.2 and +0.2 are not shown. (Pearson correlation coefficients) ..177
Table 4.17. Correlations between cognitive outcomes and perceptions of the Preferred learning environment for SI (N = 37) and TI (N = 52) students. Correlations between –0.2 and +0.2 are not shown. (Pearson correlation coefficients) ..177
Table 4.18. Descriptors and illustrative excerpts from SI students’ SMARFs. 179
Table 4.19. Number and classification of SMARFs submitted at the end of each semester. Percentages are in brackets. ..180
Table 4.20. SI and TI students’ initial epistemological beliefs.........................183
Table 4.21. Differences between SI and TI students’ initial and final epistemological beliefs. (Only students for whom both results are available were used). ...186
Table 4.22. Study activity data: mean rank, average rank order (based on mean rank) and percentage of students who ranked the activity as their first or second preference ...188
Table 4.23. Correlations and 2-tailed significance among students’ ranks of learning activity preferences: SI (N = 34) and TI (N = 43) (Spearman’s rho). Correlations of 1.00 (on the diagonal) have been omitted for clarity.189
Table 4.24. Correlations among students’ epistemological beliefs and study/learning preference rank, for SI students (N = 34) and TI students (N = 43), using Spearman’s rho correlation coefficient. Correlations between –0.2 and +0.2 are not shown. ..193
Table 4.25. Correlations between SI and TI students’ study preferences and cognitive outcome measures (Spearman’s rho correlation coefficient). Correlations between –0.2 and +0.2 are not shown. ..196
Table 4.26. Correlations between SI and TI students’ epistemological beliefs and their scores on different tests; using Pearson correlation coefficient (r)...

Table 4.27. Correlations between epistemological beliefs and perceptions of the Actual learning environment for SI (N = 37) and TI (N = 52) students. Correlations between −0.2 and +0.2 are not shown. (Pearson correlation coefficients).

Table 4.28. Correlations between epistemological beliefs and perceptions of the Preferred learning environment for SI (N = 37) and TI (N = 52) students. Correlations between −0.2 and +0.2 are not shown. (Pearson correlation coefficients).

Table 4.29. First factor structure emerging from this study with loadings > 0.4 shown (N=284).

Table 4.30. Preliminary means and reliabilities (Cronbach alpha) for each item subset (N=284).

Table 4.31. Summary of models resulting from congeneric structural modelling using AMOS.

Table 4.32. Factor structure emerging from this study following congeneric modelling of 11 item subset scales, loadings > 0.4 (N=284). The factors are sorted to enable easier comparison with Table 2.10.

Table 4.33. Loading of 44 items of the QEB onto four factors (N=284). The factors are sorted to enable easier comparison with Table 2.10.

Table 4.34. Alternative descriptors representing students’ epistemological beliefs in five belief dimensions.

Table 4.35. Highest loading items for each of four factors. Schommer’s and alternative classification of items. S = Simple Knowledge, C = Certain Knowledge, O = Omniscient Authority, I = Innate Ability, Q = Quick Learning. Column 1 is the number of the item in the QEB. Column 2 is an identifier code for each item.

Table 4.36. Estimate of scale reliabilities and correlations with other scales for four factors following factor analysis of 44 items of the QEB (N=284).

Table 5.1. Procrustes statistics and root mean square (RMS) distances between common points for the comparisons of corresponding pairs of maps.

Table 5.2. Observations and conclusions for SI students’ interrelationships between epistemological beliefs, cognitive outcomes and IT self-efficacy beliefs.

Table 5.3 Observations and conclusions for SI students’ interrelationships between Actual learning environment, epistemological beliefs, cognitive outcomes and IT self-efficacy beliefs.

Table 5.4. Observations and conclusions for SI and TI students’ Preferred learning environment, epistemological beliefs, cognitive outcomes and IT self-efficacy beliefs in comparison with the Actual learning environments.

Table A.1. Correlations among SI students’ initial epistemological beliefs, cognitive status and IT skill & confidence.

Table A.2. Correlations among TI students’ initial epistemological beliefs, cognitive status and IT skill & confidence.

Table A 3. Correlations among SI students’ final epistemological beliefs, cognitive outcomes and IT skill & confidence.

Table A.4. Correlations among TI students’ final epistemological beliefs, cognitive outcomes and IT skill & confidence.
Table A.5. Correlations among SI students’ final EBs, COs, IT measures and Actual LE attitudes...361
Table A.6. Correlations among TI students’ final EBs, COs, IT measures and Actual LE attitudes..362
Table A.7. Correlations among SI students’ final EBs, COs, IT measures and Preferred LE attitudes ...363
Table A.8. Correlations among TI students’ final EBs, COs, IT measures and Preferred LE attitudes ...364
List of Figures

Figure 1.1. A proposed model of links between factors that affect learning. ..9
Figure 1.2. Variations to Figure 1.1, on which the unique aspects of this study are superimposed. I propose that epistemological beliefs and students’ perception of their learning environment affect their learning behaviour and thus will impact on cognitive outcomes. ..10
Figure 1.3. Two depictions of typical Studio instructional sessions. If in a three-hour format, the middle ‘hour’ is a computer skills-based activity closely related to course content. ..20
Figure 2.1. Model of the determinants of a classroom learning climate (Moos, 1979, p. 161) ...61
Figure 3.1. Measurement, Design, and Analysis: Pure and Mixed Combinations. Patton, 1990, p. 195. ...122
Figure 3.2. Flowchart showing links between data sources and research questions and sub-questions. ...126
Figure 3.3. Flow chart showing categories of education research - adapted from Crowl, 1989, (Fig. 1.1, p.9) ...127
Figure 4.1. Plot showing USCLES Actual means and confidence intervals for SI (N=37) and TI (N=61) on six scales. ...172
Figure 4.2. Plot showing USCLES Actual and Preferred means for SI (N=37) and TI (N=61) on six scales. ...172
Figure 4.3. In this study, it is assumed that epistemological beliefs and students’ perception of their learning environment affect their learning behaviour and thus will impact on cognitive outcomes. The results of student learning hence change their knowledge and beliefs and motivation ...223
Figure 4.4. The diagram shows that, in general, naïve belief in Simple/Certain Knowledge leads to use of a narrow range of traditional learning strategies and lower cognitive outcomes. More sophisticated epistemological beliefs leads to use of a wider range of learning strategies and higher cognitive outcomes ...224
Figure 5.1. Plots showing dimensionality (R) versus stress and RSQ for Series I MDS solutions (CO/EB/TT). All maps were subsequently drawn in three dimensions (two dimensions projected onto the third.) ...230
Figure 5.2. Plots showing dimensionality versus stress and RSQ for Series II MDS solutions (CO/EB/LE). All maps were subsequently drawn in three dimensions (two dimensions projected onto the third.) ...231
Figure 5.3. Possible configurations of nested region – showing different degrees of inter-correlation. ...237
Figure 5.4. A learning model framework used to interpret students’ learning ...243
Figure 5.5. Legend for symbols on MDS maps...245
Figure 5.6A. Map 1A – showing correlations among SI students’ naive epistemological beliefs, IT self-efficacy beliefs and cognitive status at the beginning of the year ...246
Figure 5.6B. Map 1B – showing SI students at the beginning of the year, showing regions of association between students’ naive epistemological beliefs, IT self-efficacy beliefs and cognitive status ...246
Figure 5.7A. Map 2A – showing correlations among SI students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive status at the beginning of the year ...247
Figure 5.7B. Map 2B – showing SI students at the beginning of the year, showing regions of association between students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive status........247
Figure 5.8A. Map 3A - showing correlations among TI students’ naïve epistemological beliefs, IT self-efficacy beliefs and cognitive status at the beginning of the year...250
Figure 5.8B. Map 3B - showing TI students at the beginning of the year, showing regions of association between students’ naïve epistemological beliefs, IT self-efficacy beliefs and cognitive status. ...250
Figure 5.9A. Map 4A - showing correlations among TI students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive status at the beginning of the year...251
Figure 5.9B. Map 4B - showing TI students at the beginning of the year, showing regions of association between students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive status...251
Figure 5.10A. Map 5A – showing correlations among SI students’ naïve epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes at the end of the year...255
Figure 5.10B. Map 5B – showing SI students at the end of the year, showing regions of association between students’ naïve epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes. ...255
Figure 5.11A. Map 6A – showing correlations among SI students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes at the end of the year...256
Figure 5.11B. Map 6B – showing SI students at the end of the year, showing regions of association between students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes..256
Figure 5.12A. Map 7A – showing correlations among TI students’ naïve epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes at the end of the year...259
Figure 5.12B. Map 7B – showing TI students at the end of the year, showing regions of association between students’ naïve epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes. ...259
Figure 5.13A. Map 8A – showing correlations among TI students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes at the end of the year...260
Figure 5.13B. Map 8B – showing TI students at the end of the year, showing regions of association between students’ sophisticated epistemological beliefs, IT self-efficacy beliefs and cognitive outcomes...............................260
Figure 5.14A. Map 9A – showing correlations among SI students’ ‘naïve’ epistemological beliefs, assessments of their Actual learning environment and cognitive outcomes...265
Figure 5.14B. Map 9B – showing interrelationships of SI students’ ‘naïve’ epistemological beliefs, assessment of their Actual learning environment and cognitive outcomes...265
Figure 5.15 A. Map 10 A – showing correlations among SI students’ ‘sophisticated’ epistemological beliefs, assessments of their ‘actual’ LE and cognitive outcomes...266
Figure 5.15B. Map 10B – showing interrelationships of SI students’ sophisticated epistemological beliefs, assessment of their Actual LE and cognitive outcomes. ..266

Figure 5.16A. Map 11A – showing correlations among TI students’ ‘naïve’ epistemological beliefs, assessments of their Actual LE and cognitive outcomes. ..270

Figure 5.16B. Map 11B – showing interrelationships of TI students’ ‘naïve’ epistemological beliefs, assessments of their Actual LE and cognitive outcomes. ..270

Figure 5.17A. Map 12A – showing correlations among TI students’ ‘sophisticated’ epistemological beliefs, assessments of their Actual LE and cognitive outcomes. ..271

Figure 5.17B. Map 12B – showing interrelationships of TI students’ ‘sophisticated’ epistemological beliefs, assessments of the Actual LE and cognitive outcomes. ..271

Figure 5.18A. Map 13A – showing correlations among SI students’ ‘naive’ epistemological beliefs, assessments of their Preferred LE and cognitive outcomes. ..276

Figure 5.18B. Map 13B – showing interrelationships of SI students’ ‘sophisticated’ epistemological beliefs, assessments of their Preferred LE and cognitive outcomes. ..276

Figure 5.19A. Map 14A – showing correlations among SI students’ ‘sophisticated’ epistemological beliefs, assessments of the Preferred LE and cognitive outcomes. ..277

Figure 5.19B. Map 14B – showing interrelationships of SI students’ ‘sophisticated’ epistemological beliefs, assessments of their Preferred LE and cognitive outcomes. ..277

Figure 5.20A. Map 15A – showing correlations among TI students’ ‘naive’ epistemological beliefs, assessments of their Preferred LE and cognitive outcomes. ..280

Figure 5.20B. Map 15B – showing interrelationships of TI students’ ‘naive’ epistemological beliefs, assessments of their Preferred LE and cognitive outcomes. ..280

Figure 5.21A. Map 16A – showing correlations among TI students’ ‘sophisticated’ epistemological beliefs, assessments of the Preferred LE and cognitive outcomes. ..281

Figure 5.21B. Map 16B – showing interrelationships of TI students’ ‘sophisticated’ epistemological beliefs, assessments of their Preferred LE and cognitive outcomes. ..281
Abbreviations

<table>
<thead>
<tr>
<th>Term or acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Cognitive outcome</td>
</tr>
<tr>
<td>CK</td>
<td>Certain Knowledge (epistemological belief dimension)</td>
</tr>
<tr>
<td>EA</td>
<td>Expert Authority (epistemological belief dimension)</td>
</tr>
<tr>
<td>EB</td>
<td>Epistemological belief</td>
</tr>
<tr>
<td>FA/QL</td>
<td>Fixed Ability/Quick Learning (epistemological belief dimension)</td>
</tr>
<tr>
<td>FMCE</td>
<td>Force and Motion Conceptual Evaluation</td>
</tr>
<tr>
<td>IE</td>
<td>Interactive engagement (teaching strategies)</td>
</tr>
<tr>
<td>IT</td>
<td>Information technology – meaning computers and related technologies used for all forms of communication.</td>
</tr>
<tr>
<td>LE</td>
<td>Learning environment – restricted to a classroom learning environment and not computer software.</td>
</tr>
<tr>
<td>Map</td>
<td>Spatial configuration of correlations among variables produced by multidimensional scaling</td>
</tr>
<tr>
<td>MDS</td>
<td>Multidimensional scaling</td>
</tr>
<tr>
<td>MPEX</td>
<td>Maryland Physics Expectations Survey</td>
</tr>
<tr>
<td>PW101</td>
<td>First semester physics unit – Particle and Waves 101</td>
</tr>
<tr>
<td>QEB</td>
<td>Questionnaire on Epistemological Beliefs</td>
</tr>
<tr>
<td>QM Test</td>
<td>Quantum Mechanics test</td>
</tr>
<tr>
<td>R</td>
<td>A symbol for dimensionality (see section on multidimensional scaling)</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>RPI</td>
<td>Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td>RSQ</td>
<td>Squared correlation between distances and disparities in a MDS solution. Represents the proportion of variance in the data accounted for by the MDS model.</td>
</tr>
<tr>
<td>SCR</td>
<td>Student opportunity for communication and reflection – a subgroup of scales on the USCLES</td>
</tr>
<tr>
<td>SI</td>
<td>Studio instruction ‘matched’ group</td>
</tr>
<tr>
<td>SK</td>
<td>Simple Knowledge (epistemological belief dimension)</td>
</tr>
<tr>
<td>SMARF</td>
<td>Self-monitoring and reflection form</td>
</tr>
<tr>
<td>SM102</td>
<td>Second semester physics unit – Structure of Matter 102</td>
</tr>
<tr>
<td>SSA</td>
<td>Smallest space analysis – a variant of non-metric multidimensional scaling</td>
</tr>
<tr>
<td>TCE</td>
<td>Thermal Concept Evaluation</td>
</tr>
<tr>
<td>TEE PHYS</td>
<td>Tertiary entrance physics examination</td>
</tr>
<tr>
<td>TER</td>
<td>Tertiary entrance rank</td>
</tr>
<tr>
<td>TI</td>
<td>Traditional instruction ‘matched’ group</td>
</tr>
<tr>
<td>TIQ</td>
<td>Teacher interpersonal qualities – a subgroup of scales on the USCLES</td>
</tr>
<tr>
<td>USCLES</td>
<td>University Social Constructivist Learning Environment Survey</td>
</tr>
</tbody>
</table>
Advice for readers

Chapter 4 is in two parts. Part B contains data analysis that is a precursor to Part A.
Appendix A 7.2 contains a data flow chart to facilitate tracking of data from source to where it is used.